

PhD Proposal Defense

Molecular Simulation and Prediction of Mechanical Properties of High-performance Polyamide Crystals

Quanpeng (Sam) Yang,

Advisor: Prof. Ashlie Martini

Department of Mechanical Engineering

University of California - Merced,

Merced, California, USA

February 23, 2022

Content

Introduction

- High-performance Polymers
- Computational Methods
- Research Objectives

Methods

- Structural Models
- Simulation Protocol

Preliminary Results

- Potential Evaluation
- Structure-Property Relationship

Proposed Work

- Structure-property Correlation Studies on the Stress-strain Response of Semi-aromatic Polyamide Crystals
- Effect of Aliphatic Chain Length
- Effect of Functional Groups
- Prediction of Mechanical Properties Using Machine Learning

Introduction

Introduction >> High-performance Polymers

- Today, life without polymers is unimaginable
- Polymers have become the major synthetic materials of the 21st century
- High-performance polymers are particularly desirable
- High performance plastics typically have a permanent operating temperature of more than 150°C

Introduction >> Aromatic Polymers

Aromatic polyamide

Aromatic polyimide

Aromatic polyester

Aromatic polysulfone

U-polymer

Aromatic polytriphenylamine

- Incorporation of aromatic segments into a polymer generally results in a notable increase in its thermal stability
- For this reason, much of the research work has been ۲ directed toward aromatic compositions
- Hence, high-performance polymers usually contain ۲ large numbers of aromatic units in their structures.
- Aromatic high-performance polymers examples: aromatic polyamides, polyimides, polyesters, polysulfones, polytriphenylamine and heterocyclic polymers

Introduction >> Aromatic Polyamides

- Aromatic polyamides (aramids), such as poly(p-phenylene terephthalamide) (PPTA), which is also trademarked as Kevlar[®] and Twaron[®]
- Excellent thermal and oxidative stability, high mechanical strength, low flammability and good chemical and radiation resistance.

• Tensile strength of PPTA is much higher than other commonly seen polymers and even 5 times higher than steel

Introduction >> **PPTA Limitations**

- High melting temperature (500 Celsius), therefore it is hard to process (injection, extrusion, and 3D printing)
- Degrades before melted
- Only soluble in strong acids such as sulfuric acid, which is not economically or environmentally friendly

Introduction >> **Solution**

Reasons for high melting temperature:

- rigid structure of aromatic moieties
- low flexibility of the chains (no rotation)
- strong intermolecular interactions

Solution:

- Increase flexibility of the structure
 - Introducing flexible aliphatic compound to be aromatic-aliphatic polyamide
 - PAPX, X is depending on how many methylene units are included

Introduction >> Limitations of Experiments

Small

• Difficult to apply tensile strain in the transverse direction of single fiber

Sensitive

 Minor changes in the molecular structure of the aromatic-aliphatic polyamides might significantly affect mechanical behavior

Crystallinity

• Obtaining large single crystal materials is challenging, and the morphology of the polymers is complicated due to the presence of amorphous contributions

Effects

 Difficult with experimental techniques to distinguish the relative contributions of intramolecular (e.g., covalent bonds) interactions and intermolecular interactions (e.g., H-bonding and π-stacking) to bulk mechanical properties.

Introduction >> Density Functional Theory (DFT)

- The quantum mechanical wavefunction contains, in principle, all the information about a given system
- A method of obtaining an approximate solution to the Schrödinger equation of a many-body system
- Prediction and calculation of material behavior based on quantum mechanics
- Widely used in physics, chemistry, and material science

• Only hundreds of atoms

Introduction >> Molecular Dynamics Simulations

- DFT simulations are accurate but computationally expensive (only restricted to a few hundreds of atoms)
- MD simulations use potentials either fitting from experiments or DFT calculations
- MD simulations can handle much larger models (easily handle over 10,000 atoms)

11

Introduction >> Potentials

- Potentials are used to describe the interactions between the atoms in the model system
- Example: Lennard-Jones potential

Lennard-Jones Potential

Introduction >> Previous Studies

- MD has been previously recognized as a useful tool for studying the behavior of crystalline PPTA
- Studies have been performed to:
 - Predict the ideal molecular geometry and chain conformations [1]

• Thermal expansion coefficient and elastic moduli [2,3]

• Compressive failure due to chain buckling [4]

Polymer 33.2 (1990), pp. 398-404.
Macromolecules 27 (1994), pp. 7197-7204.
Polymer 25 (1984), pp. 147164.
Journal of Materials Science 31.22 (1996), pp. 5885-5889.

	F	PPTA	PBA		
	calculated	experimentala	calculated	experimentala	
α1 (10-5 K-1)	7.9	8.3	7.7	7.0	
a2 (10-5 K-1)	2.9	4.7	4.6	4.1	
$\alpha_3 \ (10^{-5} \text{ K}^{-1})$	-0.57	-0.29	-0.84	-0.77	

^a Ii et al., ref 24.

Introduction >> Previous Studies

- More recent work [1-6] on PPTA MD simulations:
 - Various defect patterns and impurities,

Defects

• Elastic moduli and strength

[1] Journal of Materials Engineering and Performance 20 (2011), pp. 1401-1413

- [2] Journal of Materials Science 46.14 (2011), pp. 4787-4802.
- [3] *Journal of Materials Engineering and Performance* 22.3 (2013), pp. 681695.
- [4] Advances in Materials Science and Engineering 2013 (2013), pp. 115.
- [5] Journal of Materials Engineering and Performance 22.11 (2013), pp. 3269-3287.
- [6] Journal of Materials Science 49.24 (2014), pp. 82728293.

Introduction >> **Previous Studies**

- The most recent work PPTA MD simulations [1-2]:
- Two potentials (PCFF and ReaxFF Liu) were evaluated for their ability to model PPTA structure and mechanical response to strain
- PCFF and ReaxFF Liu Potentials give similar results, except that PCFF can only be used for situations where primary bonds are not expected to rupture

Different Potentials

Polymer 114 (2017): 329-347. [2] Polymer 129 (2017): 92-104

• No comparison of a comprehensive set of potentials, including multiple reactive and non-reactive models

• No generalizability assessed by evaluating homologous material systems

Methods

Methods >> Models of Polyamides

- PPT5 to PAP8 are four example aromatic-aliphatic polyamides
- They both have aromatic and amide groups
- The difference among them is the number of carbons between the benzene rings

Methods >> Simulation Protocol

Preliminary Results

Preliminary Results >> Potential Selection – Lattice

	Unit Cell Lattice Parameters							
Polyamide	a (nm)	b (nm)	c (nm)	α (°)	β (°)	γ (°)		
PPTA	0.787	0.518	1.29	90	90	90		
PAP5	0.850	0.470	2.48	90	85	90		

Macromolecules 49 (2016): 950-962

- Comparison of the accuracy (error) and stability (deviation) of seven reactive potentials and two non-reactive potentials.
- CVFF has the largest error and especially large error in γ of PAP5

Reactive ReaxFF Potentials:

Mattsson et al. Phys. Rev. B 2010, 81, 054103. Zhang et al. J. Phys. Chem. B 2009, 113, 31, 10770-10778. Kamat et al. J. Phys. Chem. A 2010, 114, 48, 12561-12572. Wood et al. J. Phys. Chem. A 2014, 118, 5, 885-895. Vashisth et al. J. Phys. Chem. A 2018, 122, 32, 6633-6642. Liu et al. J. Phys. Chem. A 2011, 115, 11016-11022. Budzien et al. J. Phys. Chem. B 2009, 113, 13142-13151.

Preliminary Results >> Potential Selection – H-bonding

- Comparison of O-N radial distribution functions calculated for PPTA and PAP5
- For PPTA, the best potentials are Wood, Budzien, Mattsson, Zhang, Vashisth, and Liu
- For PAP5, the best are OPLS, Wood, Zhang, Vashisth, and Liu

23

Preliminary Results >> Potential Selection – π-stacking

- Comparison of O-N radial distribution functions calculated for PPTA and PAP5.
- For PPTA, the RDF peaks of Liu and OPLS are the closest to the reference value.
- For PAP5,Wood and Liu are the most accurate, with relatively narrow peaks.

Preliminary Results >> System Size Selection

- Identify the smallest model that can be used (to maximize computational efficiency) without simulation artifact
- OPLS doesn't break at all
- Vashisth shows fluctuations between 7-12% strain
- Size 4x4x4 and the ReaxFF Liu potential are suitable for the stress-strain response of PPTA and PAP5

Preliminary Results >> Stress-strain Simulation

Preliminary Results >> Stress & Modulus

- Low strain modulus lower than high strain modulus
- Low strain modulus decreases with increasing number of non-aromatic C atoms
- High-strain modulus is essentially independent of the number of non-aromatic C atoms

Preliminary Results >> Explain Modulus Trend

• After equilibration, the chains become wavy, especially for polymers with more non-aromatic C

PAP8

Initial Structure

After Equilibration

Preliminary Results >> Explain Modulus Trend

- Side view (yz-plane) of the polymers (only backbone C and N are shown)
- As the number of non-aromatic C increases, the atom cloud spreads out more (more wavy chains)

Preliminary Results >> Explain Modulus Trend

- The decrease in modulus with chain length is due to increasing waviness of the polymers
- Waviness is due to the methylene groups acting as spacers between the hydrogen-bonded amide groups, which increases the conformational freedom of the polymer chains
- More waviness decreases stiffness because force resistant to stretch has less components in the chain direction

30

Preliminary Results >> Explain Transition Trend

• Movies of strain simulations shown from the y-direction where all atoms except the aromatic rings are faded. Only even polymers (PAP6 and PAP8) exhibit interchain slip.

PPTA

PAP5

PAP6

PAP7

PAP8

Preliminary Results >> Explain Transition Trend

- The gradual increase in stiffness exhibited by all polymers (except PPTA) correlates well with changes in the dihedral angles, indicating the low strain is accommodated by elongation/rotation of wavy chains
- The sharp transition exhibited by PAP6 and PAP8 correlates with intra chain slip, quantified by ring-ring distance
- These even polymers slip because they have the less stable trapezoidal structure

32

Preliminary Results >> Explain Transition Trend

- Both single chain and crystals exhibit lower stiffness at low strain than high strain and a gradual increase in stiffness around 5% strain; this indicates the behavior is due to intrachain processes
- For the PAP6 crystal only, there is a sharp transition from low to high strain behavior observed around 10% strain
- This suggests there are odd-even effects and that they are due to interchain processes

33

REAL PROPERTY OF CALIFORNIA

Preliminary Results >> Ultimate Stress

- The ultimate stress exhibits odd-even behavior where odd numbers of carbon atoms have larger strength
- Since the chains are extended at this point, and Spence showed the bond strength is the same for all polymers using DFT, this must be an interchain effect
- Interchain strength is determined by the coplanarity of the rings, quantified by ring-ring angle, which is lower (more aligned rings) for the polymers with odd numbers of carbon atoms, explaining their strength

• Representative snapshots of trapezoidal and parallelogrammatic structures in the backbones of odd (PAP5) and even (PAP6) polymers.

 It is an important origin of oddeven effect

Preliminary Results >> Conclusion

500 -

400 -

Modulus (GPa)

100 -

0 -0

0% strain

-2

z (Å)

-3+

Proposed Work

Proposed work >> Representative Polyamides

Examples of polyamides

• All can be written as a formular:

Macromolecules 49.3 (2016): 950-962.

Proposed work >> Effect of Aliphatic Chain Length

- From our preliminary results, we have seen that increasing aliphatic chain length can increase waviness of polyamides at equilibrium
- This results in a smaller low-strain modulus and higher failure strain for polyamides with longer aliphatic chains
- This is what we observed from increasing the chain from three to
- However, what if the length of the aliphatic chain keeps increasing? Is it still true?

Proposed work >> Effect of Functional Groups

Functional Groups:

40

Proposed work >> Machine Learning

Polyamide Information

input

- Molecular weight?
- # of atoms?
- Bonds?
- Chain length?

ML Models

- Linear Regression
- Polynomial Regression
- Artificial Neural network (ANN)
- Support Vector Machines (SVM)
- Deep Learning

Mechanical Properties

- Low-strain modulus
- High-strain modulus
- Ultimate strain
- Ultimate stress

Thank you!

Appendix

Preliminary Results >> Stress-strain in y & RDFs of PPTA

Only part of the model is shown to reflet the detailed changes in structure ٠

44

Preliminary Results >> Stress-strain in y & RDFs of PAP5

Preliminary Results >> Stress-strain & RDFs in y

Preliminary Results >> Stress-strain in z & RDFs of PPTA

Preliminary Results >> Stress-strain in z & RDFs of PAP5

Preliminary Results >> Stress-strain & RDFs in z

